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Abstract. We study the frequency and phase synchronization in two coupled identical and nonidentical
neurons with channel noise. The occupation number method is used to model the neurons in the context
of stochastic Hodgkin-Huxley model in which the strength of channel noise is represented by ion channel
cluster size of neurons. It is shown that channel noise allows the two neurons to achieve both frequency
and phase synchronization in the regime where the deterministic Hodgkin-Huxley neuron is unable to
be excited. In particular, the identical channel noises lead to frequency synchronization in weak-coupling
regime. However, if the coupling is strong, the two neurons could be frequency locked even though the
channel noises are not identical. We also show that the relative phase of neurons displays profuse dynamical
regimes under the combined action of coupling and channel noise. Those regimes are characterized by the
distribution of the cyclic relative phase corresponding to antiphase locking, random switching between two
or more states. Both qualitative and quantitative descriptions are applied to describe the transitions to
perfect phase locking from no synchronization states.

PACS. 05.45.Xt Synchronization; coupled oscillators – 05.40.-a Fluctuation phenomena, random processes,
noise, and Brownian motion – 87.16.-b Subcellular structure and processes

1 Introduction

The synchronization phenomena have been widely stud-
ied in neural systems in past decades [1–5]. Experiments
show that the synchronization of coupled neurons could
play a key role in the biological information communica-
tion of neural systems [2]. Recent research also suggests
that synchronization behavior is of great importance for
signal encoding of ensembles of neurons. Especially the
phase synchronization may be important in revealing com-
munication pathways in brain [6]. Studying the synchro-
nization of a pair of coupled neurons has attracted large
amounts of research attention. In order to understand the
dynamical properties of a neural network, it is important
to characterize the relation between spike trains of two
neurons in the network [7]. What’s more, studies show
that noise enhances synchronization of neural oscillators.
For example, the identical neurons which are not coupled
or weakly coupled but subjected to a common noise may
achieve complete synchronization. Actually, this is a gen-
eral results for all the dynamical system [8–12]. Both inde-
pendent and correlated noises are found to enhance phase
synchronization of two coupled chaotic oscillators below
the synchronization threshold [13,14].
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Among large population of neurons, different neurons
are commonly connected to other group of neurons and
receive signals from them. As a result of integration of
many independent synaptic currents, those neurons re-
ceive a common input signal which often approaches a
Gaussian distribution [15]. Therefore, noise was usually
considered as external and introduced by adding to the
input variables. However, recent work found that the ran-
dom ionic-current changes produced by probabilistic gat-
ing of ion channels, called channel noise or internal noise,
also play an amazing role in single neuron’s firing behav-
ior and information processing progress [16–18]. Besides,
Casado has showed that channel noise can allow the neu-
rons to achieve both frequency and phase synchroniza-
tion [20,21]. This finding suggests that channel noise could
play a role as promoter of synchronous neural activity in
population of weakly coupled neurons. However, Casado
didn’t give a quantitative description of the results.

The magnitude of the ion channel noise is changed
via the variation of the channel cluster size of neurons. It
implies that synchronization in neural system is also re-
stricted by the channel cluster size of neurons. Actually,
the cluster size of ion channels embedded in the biomem-
brane between the hillock and the first segment of neu-
rons determines whether the neuron fires an action po-
tential. The channel cluster size of this region is different
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for different neurons or for different developing stages of
a neuron. With the decreasing of ion channel cluster size,
ion channel noise would be induced thus the firing behav-
ior of neurons would be greatly changed (for review see
Ref. [17]). It is natural to ask to what extent the change
of the channel cluster size affect the collective activities
of neuron ensembles. For this purpose, we investigated
the effect of ion channel cluster sizes (i.e, channel noise)
of neurons on synchronization of two coupled stochastic
Hodgkin-Huxley (HH) neurons in this paper.

Here we adopted a so called occupation number
method rather than the Langevin method Casado had
used to describe the single neuron for two reasons. First,
the Langevin approach has been proved could not repro-
duce accurate results for small and large cluster sizes.
Second, occupation number method gives a direct rela-
tion between channel cluster size of neuron and its firing
behavior, and it’s the fastest method for a given accu-
racy [22]. The main goal of our work is to explore what
role the channel noise might play in the synchronization
of two coupled neurons. We try to give qualitative as well
as quantitative descriptions of the result. The practical
meaning of our study is obvious, since the channel cluster
size of neurons can be regulated by channel blocking ex-
perimentally [23], our study may provide a possible way
to control neural synchronization.

This paper is organized as follows. In Section 2, the
occupation number method of stochastic Hodgkin-Huxley
neuron is introduced and the firing behaviors of neurons
with different channel cluster sizes are demonstrated. In
the following sections, we explored the combined effect
of coupling strength and cluster size on the synchroniza-
tion behaviors of two neurons with an electrical synaptic
connection. Section 3 is devoted to frequency synchroniza-
tion. The phase synchronization of identical and noniden-
tical neurons are discussed in Section 4. A conclusion is
presented in Section 5.

2 The model

Hodgkin-Huxley neuron model provides direct relation be-
tween the microscopic properties of ion channel and the
macroscopic behavior of nerve membrane. The membrane
dynamics of HH equations is given by

Cm
dV

dt
= −(GK(V − V rev

K ) + GNa(V − V rev
Na )

+ GL(V − VL) − I), (1)

where V is the membrane potential. V rev
K , V rev

Na , and VL

are the reversal potentials of the potassium, sodium, and
leakage currents, respectively. GK, GNa, and GL are the
corresponding specific ion conductances. Cm is the spe-
cific membrane capacitance, and I is the current injected
into this membrane patch. The voltage-dependent conduc-
tances for the K+ and Na+ channels are given by

GK = γK
Nopen

K

S
, GNa = γNa

Nopen
Na

S
, (2)

where Nopen
K and Nopen

Na are the numbers of open potas-
sium and sodium channels. S is the membrane patch area.
γK and γNa give the single-channel conductances of K+

and Na+ channels. Then the numbers of total potassium
and sodium channels NK and NNa are given by the equa-
tions NK = ρK × S and NNa = ρNa × S, where ρK and
ρNa are the K+ and Na+ channel densities respectively.
By introducing time constants τK = Cm

ρKγK
, τNa = Cm

ρNaγNa

and τL = Cm

GL
, we end up with the following equation for

the membrane potential

dV

dt
= −

(
Nopen

K

τKNK
(V − V rev

K ) +
Nopen

Na

τNaNNa
(V − V rev

Na )

+
1
τL

(V − VL) − I

)
. (3)

Individual channels open and close randomly. If the num-
ber of channels are large and they act independently
of each other, then, from the law of large numbers,
Nopen

K /NK (or Nopen
Na /NNa) is approximately equal to the

probability that any one K+ (or Na+) channel is in an
open state, and can be represented as continuous deter-
ministic gating variables n4 and m3h. This leads to the
deterministic version of HH model [24,26],

Cm
dV

dt
= −gKn

4(V − V rev
K ) − gNam

3h(V − V rev
Na )

− GL(V − VL) + I, (4)

where gK = ρK × γK and gNa = ρNa × γNa are the maxi-
mal potassium and sodium conductance per unit area. n4

indicates that the K+ channel has four separate gates and
that a K+ channel is opened when all those gates are open;
m3h indicates that three m-gates and one h-gate must be
opened to open a Na+ channel. The gating variables obey
the following equations,

d

dt
x = αx(V )(1 − x) − βx(V )x, x = m,h, n, (5)

where αx(V ) and βx(V ) (x = m,h, n) are voltage depen-
dent opening and closing rates and are given in Table 1
with other parameters used in the simulations.

The deterministic HH neuron model [Eqs. (4, 5)] de-
scribes the transmembrane potential without the need to
treat the underlie activity of individual ion channels. How-
ever, for the limited number of channels, equation (4) is
no longer valid and statistical fluctuations will play a role
in neuronal dynamics [17]. So we have to return to equa-
tion (3) and have to determine Nopen

K and Nopen
Na as a

function of time by stochastic simulation methods based
on state diagrams that indicate the possible conformation
states of channel molecules.

As shown in Figure 1, both K+ and Na+ channels exist
in many different states and switch between them accord-
ing to voltage depended transition rates (identical to the
original HH rate functions). [ni] is the state of K+ channel
with i open gates and [mihj ] is the state of Na+ channel
with i open m-gates and j open h-gates. Hence, [n4] labels
the single open state of the K+ channel and [m3h1] the
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Table 1. Parameters and Rate Functions Used in Simulations.

Cm Specific membrane capacitance 1 µF/cm2

V rev
K Potassium reversal potential −77 mV

V rev
Na Sodium reversal potential 50 mV

VL Leakage reversal potential −54.4 mV
γK Potassium channel conductance 20 pS
γNa Sodium channel conductance 20 pS

GL Leakage conductance 0.3 mS/cm2

ρK Potassium channel density 20/µm2

ρNa Sodium channel density 60/µm2

τK Potassium channel time constant 1/36 ms
τNa Sodium channel time constant 1/120 ms
τL Leakage channel time constant 3.3 ms

αn
0.01(V +55)

1−e−(V +55)/10

βn 0.125e−(V +65)/80

αm
0.1(V +40)

1−e−(V +40)/10

βm 4e−(V +65)/18

αh 0.07e−(V +65)/20

βh
1

1+e−(V +35)/10

Fig. 1. Kinetic scheme for a stochastic potassium channel (a)
and sodium channel (b). n4 and m3h1 are open states, while
the other states are no-conducting.

Na+ channel. Usually we can simulate the kinetic scheme
of each ion channel to get the numbers of open sodium
and potassium channels at each instant. However, it is
not an efficient way because many transitions of states
do not change the conductance of the channel. Instead of
keeping track of the state of each channel, we keep track
of the total populations of channels in each possible state
so Nopen

K and Nopen
Na at each instant can simply be de-

termined by counting the numbers of channels in state
[n4] and [m3h1]. Specifically, if the transition rate between
state A and state B be r and the number of channels in
these states be nA and nB. Then, the probability that a
channel switches within the time interval (t, t+∆t) from
state A to B is given by p = r∆t. Hence, for each time
step, we determine ∆nAB, the number of channels switch
from A to B, by choosing a random number from a bino-

Fig. 2. The mean firing frequency as a function of the channel
cluster size N for I = 0 µA/cm2(◦), I = 3 µA/cm2(�) and
I = 6 µA/cm2(�). The data are obtained from spike trains of
2000 action potentials.

mial distribution [18],

P (∆nAB) =
(

nA

∆nAB

)
p∆nAB (1 − p)(nA−∆nAB). (6)

Then we update nA with nA −∆nAB, and nB with nB +
∆nAB. To make sure that the number of channels in each
state is positive, we update those number sequentially,
starting with the process with the largest rate and so forth.

Voltage-gated ion channels are stochastic devices. The
origin of channel noise is basically due to fluctuations
of the fraction of open ion channels (thus the channel
currents) around the corresponding mean values. The
strength of the fluctuation is inversely proportional to
the number of total ion channels [17,19]. Though average
membrane current is at constant, as we will see, the vari-
ance of the Na+ and K+ currents cause remarkable effects
on neuronal dynamics. In this work, we introduce channel
cluster size N (N = NK = NNa/3) as a measurement of
channel noise level so that the correct proportion between
Na+ and K+ channel densities is preserved. With increas-
ing channel cluster size, the fluctuations of the fraction
of open ion channels, thus the variance of the the corre-
sponding channel currents decreases. For a large number of
channels this noise becomes negligible (i.e., the determin-
istic case). The threshold constant current for determinis-
tic HH neuron to generate consecutive action potentials is
Ith = 6.26 µA/cm2. However, due to the channel noise, the
stochastic HH neurons can generate spiking activity with
subthreshold input current [22]. Figure 2 shows the mean
firing frequency (defined in Sect. 3) as a function of chan-
nel cluster size for different constant current. If the chan-
nel cluster size is small, the neuron fires action potentials
with high frequency. As the channel cluster size increases,
the mean firing frequency drops quickly, approaching the
deterministic case that no firing activities occur with the
same subthreshold input currents. With decreasing the in-
put current, the firing frequency decreases. However, the
firing activities will not vanish if the input current is de-
creased to zero. Thus, as have demonstrated, channel noise
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shifts the onset of firing behavior to lower values of input
current I.

To explore the synchronization phenomena, we con-
sider two stochastic HH neurons coupled by an electrical
synaptic connection. The system is described by the fol-
lowing equations,

dV1

dt
= − Nopen

K1

τKNK1

(V1 − V rev
K ) − Nopen

Na1

τNaNNa1

(V1 − V rev
Na )

− 1
τL

(V1 − VL) + ε(V1 − V2) + I1, (7)

dV2

dt
= − Nopen

K2

τKNK2

(V2 − V rev
K ) − Nopen

Na2

τNaNNa2

(V2 − V rev
Na )

− 1
τL

(V2 − VL) + ε(V2 − V1) + I2. (8)

Here V1 and V2 are the instantaneous membrane potentials
of the two neurons and ε is the diffusive coupling strength
between the neurons. Nopen

K1
, Nopen

Na1
, Nopen

K2
, Nopen

Na2
are

the numbers of open K+ and Na+ channels of neuron 1
and 2, respectively ; NK1 , NNa1 , NK2 , NNa2 are the num-
bers of total K+ and Na+ channels for neuron 1 and 2,
respectively. I1 and I2 are two constant input currents
which are set at I1 = I2 = 6 µA/cm2. Here, N1 and N2

(Ni = NKi = NNai/3, i = 1, 2) are the channel cluster
sizes for each neuron.

The numerical integration of system mentioned above
is carried out by using the Euler algorithm with a step
size of 0.01 ms. And all simulations are working in Ito
framework. The occurrences of action potentials are de-
termined by upward crossings of the membrane potential
at a certain detection threshold of 10 mV if it has previ-
ously crossed the reset value of −50 mV from below.

3 Frequency synchronization

From the above-mentioned system, we can get two point
processes in the following form,

z(t) =
N∑

n=1

δ(t− tn). (9)

Each one gives the spike sequence of a particular neuron.
The mean spiking frequency of neuron i (i = 1, 2) is de-
fined as,

ωi = lim
N →∞

1
N

N∑
n=1

2π
tn+1 − tn

, i = 1, 2. (10)

Generally, synchronization means an adjustment of
timescales of oscillations in systems due to their circum-
stances. In other words, oscillators can shift the timescales
to make their ratio close to a rational number n : m, where
n and m are integers. This phenomenon is usually referred

Fig. 3. The winding number ω1/ω2 as a function of N1/N2

with N2 = 2 × 102 and ε = 0.3 (◦), ε = 0.1 (•), ε = 0.01 (∗),
ε = 0.001 (�).

to as n : m frequency synchronization, and its suitable
measure is the closeness of the ratio of ω1/ω2 to the chosen
rational number n : m [25]. In this paper we will discuss
only 1 : 1 synchronization. Note that the frequency lock-
ing discussed in this section is in a stochastic sense, and
refers to the equivalence of the average frequencies rather
than the instantaneous frequency. So it is not a sufficient
condition for synchronization. However, since the firing
rate of a neuron is often argued to carry information of
the stimulus, studying of the frequency synchronization is
especially meaningful in the context of rate coding scheme.

We investigated the shift of winding number ω1/ω2

along with both the variation of coupling strength and
channel cluster size. When the coupling strength is small,
as shown in Figure 3, with the increasing of N1/N2 from
N1/N2 < 1, the winding number will decrease from a value
at which the two neurons are not synchronized. When two
channel cluster sizes are the same (N1/N2 = 1), both neu-
ron will be frequency locked. Further increasing of N1/N2

will desynchronize them to a certain levels. Note that in
the range of N1/N2 > 1, increasing the value of coupling
strength tends to increase ω1/ω2, and the increasing is
larger with larger coupling strength. In panel A of Fig-
ure 4, it is seen clearly that though frequency synchro-
nization can be achieved with arbitrary chosen value of
N2, the tuning is very critical, as a small variation of N1

fromN2 leads to desynchronization. As has been described
above, for a isolated neuron, its average firing rate de-
creases with increasing its channel cluster size (i.e., de-
creasing the channel noise intensity). Thus, at a given
channel cluster size, the channel noise term is identical
for the two neurons. In this case, their average firing rates
would be the same, which means the two neurons are fre-
quency locked.

However, if the coupling strength is increased to a
rather large value (for example, ε = 0.3 in Fig. 3), the
coupling strength starts to take command of the frequency
synchronization as the two neurons are able to be en-
trained in a wider range of channel cluster size (i.e., chan-
nel noise level). It is seen in panel B of Figure 4 that
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Fig. 4. The winding number ω1/ω2 as a function of N1/N2 with ε = 0.01 (A), ε = 0.1 (B) and different N2: N2 = 2 × 102 (◦),
N2 = 2 × 103 (�) and N2 = 2 × 104 (∗).

neurons with larger value of N2 is easier to get frequency
entrained in a wider range with lower coupling strength.
Even in the weak-coupling case, as shown in panel A of
Figure 4, large channel cluster sizes tend to enhance syn-
chronization (make ω1/ω2 closer to 1). This implies that
neurons with large channel cluster sizes (i.e., small channel
noise level) are easier to adjust their timescales to make
their firing rates close to each other. However, if the chan-
nel noises are too small, the neurons won’t fire spikes with
subthreshold stimuli.

It is concluded that for identical, symmetrically cou-
pled neurons, when the coupling strength is small, the
channel cluster sizes at frequency synchronization must be
the same, whereas the coupling strength only has a limited
effect only when the channel cluster sizes of the two neu-
rons are not same. However, when the coupling strength is
rather large, the two neurons are able to achieve frequency
synchronization with a greater range of channel cluster
sizes. In this regime, though large channel noise degrade
frequency synchronization, small channel noise intensities
help to get the neurons frequency synchronized with sub-
threshold stimuli.

4 Phase synchronization

Given a data set or some model dynamics there exists a
variety of methods to define an instantaneous phase φ(t)
of a signal or a dynamics [27]. However, for a stochastic
system it is essential to assess the robustness of the phase
definition with respect to noise. In many practical appli-
cations like neural spike sequence, it is useful to define an
instantaneous phase φ(t) by linear interpolation,

φ(t) = 2π
t− tn

tn+1 − tn
+ 2πn (tn � t � tn+1), (11)

where tn is the time at which the neuron fires a spike.
The instantaneous phase difference between them is then
given by

ψ(t) = φ1(t) − φ2(t). (12)

Phase synchronization is a weak form of synchronization
in which there is a bounded phase difference of two signals.
Usually, the relative phase can vary from −∞ to +∞ in

stochastic system if the coupling is weak and/or the noise
level is high. However, if we increase coupling strength
and adjust noise to a low level, the relative phase will
fluctuate around some constant values. Sometimes, noise
would induce a phase slip where the relative phase changes
abruptly by ±2π. Thus, it is useful to define the phase
locking condition in a statistical sense by the cyclic relative
phase [1]

Φ = ψ(mod2π). (13)

A dominant peak of the distribution of this cyclic relative
phase P (Φ) reflects the existence of a preferred relative
phase for the firing of both neurons. When this preferred
phase is zero we speak of phase synchronization in a statis-
tic sense. We speak of out-of-phase synchronization when
the distribution P (Φ) peaks around a nonzero value of Φ.
Especially if the nonzero value is π, we call it antiphase
synchronization [21,27].

4.1 Phase synchronization of identical neurons

In this section, we study phase synchronization of two
identical neurons (N1 = N2 = N). In Figure 5, we
present the synchronization diagram in terms of the cou-
pling strength ε and channel cluster size N . A different
form of the distribution P (Φ), which is plotted in Fig-
ure 6, characterizes each region in it. The corresponding
temporal evolution of the relative phase is illustrated in
Figure 7. We will give a detailed description of each region
in the following part.

In region 1, the distribution shows a monomodal char-
acter as plotted in panel A, B, C of Figure 6. In this re-
gion, when both ε and N are very large, the distribution
of P (Φ) is a narrow peak on π. Thus we can speak of an-
tiphase synchronization for a statistic out-of-phase lock-
ing is achieved. With the decreasing of N , the peak is
still on π but becomes broader(see the change of peaks
in A → B → C). This suggests that in the case of large
coupling strength, large channel cluster size (i.e., small
channel noise) allow the statistical antiphase synchroniza-
tion to approach full antiphase synchronization appear-
ing in deterministic systems. As can be seen in Figure 5,
there is a minimal value of the coupling strength ε0 for
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Fig. 6. The distribution of the cyclic relative phase P (Φ) corresponding to some representative points of the synchronization
diagram in Figure 5. (A) ε = 0.3, N = 2× 105; (B) ε = 0.3, N = 2× 104; (C) ε = 0.3, N = 2× 103; (D) ε = 0.08, N = 2× 105;
(E) ε = 0.08, N = 2 × 104; (F) ε = 0.08, N = 2 × 103; (G) ε = 0.02, N = 2 × 104; (H) ε = 0.02, N = 2 × 103; (I) ε = 0.004,
N = 2 × 103. Each plane have different vertical scales.

Fig. 5. Synchronization diagram for the distribution of
cyclic relative phase P (Φ). Region 1 correspond to state of
monomodal distribution (•), region 2 to bimodal distribution
(◦), region 3 to drifting evolution of ∆φ (�); region 4 to no fir-
ing area (×). There are no lines plotted to separate the subre-
gions in those regions because the distribution of P (Φ) changes
in a continuous manner in those regions.

which the antiphase locking becomes stable in a statis-
tical sense. This minimal coupling strength ε0 (≈ 0.115)
is independent of the channel cluster size. To show the
effect of channel noise on antiphase synchronization, we

demonstrated the temporal evolution of relative phase in
this situation in panel A and B of Figure 7. Obviously,
decreasing channel cluster sizes will lead to larger fluc-
tuation of the relative phase due to channel noise, thus
give distribution of P (Φ) a broader peak, but it does not
destruct antiphase synchronization.

Region 2 marked by open circles corresponds to the bi-
modal distribution of P (Φ), as shown in panel D, E and F
of Figure 6. In this region, when ε and N are large [2(a)],
the two peaks of the distribution are well spaced from
each other. To uncover the underlying mechanism of this
bimodal distribution, we investigated the temporal evo-
lution of relative phase in this situation. As we observed
in panel C of Figure 7, ψ(t) will fluctuates successively
around one of a pair of symmetric values for a long period
then switch suddenly to the other one. This fact clearly
reflects the two-state character of the phase dynamics. We
argue that this two-state dynamics is the result of a com-
promise between coupling and noise. The existence of a
two-state dynamics suggests the possibility of inducing a
kind of stochastic resonant behavior by coupling the rela-
tive phase to the action of an external periodic forcing [21].
Again, if we decrease N to enter 2(b) area, the two peaks
will be broader, and gradually overlapped and have small
wings. The overlapping means that the bimodal distribu-
tion becomes unstable. The wings implies that preferred
relative phase for the firing of both neurons does not prefer
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Fig. 7. Temporal evolution of the relative phase (A) ε = 0.3,
N = 2× 105; (B) ε = 0.3, N = 2× 103; (C) ε = 0.08, N = 104;
(D) ε = 0.02, N = 2 × 103.

to some certain values anymore, thus the synchronization
becomes weak. If we further decrease N to enter 2(c) area,
we find that the two peaks move closer and then merge
but still have a maxima around π (see panel F of Fig. 6).

Actually, the phase-locking phenomena in noise-free
neural systems have been well studied through effective
coupling analysis [28–30]. S.K. Han and Kuramoto had
demonstrated that diffusive interaction will dephase in-
teracting oscillators and may stabilize them at a phase
difference given by the corresponding stable fixed point
according to the initial condition (see detail in Ref. [29]).
In our case, those stable fixed points are stochastic vari-
ables with single peaks distribution alike the peaks demon-
strated in Figure 6. In region 1, there is only one stable
fixed point distributed around π and will become broader
if the noise intensity is increased. In region 2, the system
has two stable fixed points. The system will be stabilized
at one point according to the initial condition, then the
channel noise occasionally change the initial condition and
stabilized the system at the other one. If the channel clus-
ter size N is extremely large, though there are still two
stable fixed point, the channel noise is too weak to change
the initial condition frequently, and only one of the two
peaks can be observed with certain recording time interval
(not shown). As N decreases, the channel noise becomes
larger, giving broader distributions of the two stable fixed

Fig. 8. Synchronization indices for two identical neurons ver-
sus coupling strength with various ion channel cluster sizes N .

points and more frequent switches between them. It is the
broader distributions of the two stable fixed points that
leads the overlapping of the two peaks in this area.

In region 3, we find the bimodal distribution of P (Φ)
mentioned before disappears and the single peak distribu-
tion appears again with large wings. Panel G of Figure 6
shows a representative cyclic relative phase distribution
corresponding to the 3(a) area, which is characterized by
a peak around π and another smaller one around 0. If
we decreasing the coupling strength to enter 3(b) area
from 2(c) area, the central peaks will decrease in height
[panel H] and eventually disappear [3(c) area, panel I]. In
3(c) area, the relative phase will drift unboundedly and
P (Φ) ceases to be useful (see panel D of Fig. 7). When
the coupling strengths is very weak, the system at hand
can be considered as two uncoupled neurons which fire in-
dependently due to ion channel noise. Thus their relative
phase can be at any arbitrary value (as show in panel D
of Fig. 7), and gives relative phase a smooth distribution.

Region 4 in Figure 5 is the silent state in which both
neurons cannot fire spikes but only perform low ampli-
tude fluctuations around its resting potentials under the
combining effects of coupling and channel noise.

Next, we characterize those peaks with synchroniza-
tion indices which are defined as

γ2 = 〈cosΦ(t)〉2 + 〈sinΦ(t)〉2, (14)

where 〈...〉 denotes temporal averaging. The index γ as-
sumes values between 0 (no synchronization) and 1 (per-
fect phase locking) [25].

Figure 8 quantitatively demonstrated the synchroniza-
tion of two identical neurons under the effect of both cou-
pling strength and channel noise. When coupling strength
is small, the two neurons show almost no synchroniza-
tion [γ ≈ 0, corresponding to 3(c) area of Fig. 5] or silent
state when N is large(incomplete lines, corresponding to
region 4 of Fig. 5). The synchronization index γ is not sen-
sitive to the change of channel cluster size N in small cou-
pling strength region. As the coupling strength increases
the degree of synchrony of the two neurons increases. The
maximal synchrony appears at γ ≈ 1 (corresponding to
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Fig. 9. The distribution of the cyclic relative phase P (Φ) for nonidentical neurons. (A)ε = 0.2, N1 = 2 × 102, N2 = 2 × 103;
(B)ε = 0.08, N1 = 1 × 105, N2 = 2 × 104; (C)ε = 0.03, N1 = 2 × 102, N2 = 2 × 103. Each plane have different vertical scales.

region 1 of Fig. 5). Note that when channel cluster sizes
are large, as shown in Figure 5, there exists a step-like
transition (a threshold) to perfect synchronization. The
threshold is around about ε = 0.04 when N = 2 × 105.
However, it disappears when cluster sizes decrease, and
the transition becomes a graded type. It implies that chan-
nel noise can ‘soft’ the threshold to give a wider range of
synchronization degree.

4.2 Phase synchronization of nonidentical neurons

Actually, neurons in nature are not identical. The non-
identity can be achieved in numerical simulation by mis-
matching neuronal parameters (the leakage conductance
gl, for example) [15]. Here, we introduce a mismatch
into the channel cluster sizes of the two neurons (i.e.,
N1 �= N2). With this parameter heterogeneity, the neuron
with smaller channel cluster size, due to its larger channel
noise, is easier to be excited by subthreshold stimuli and
has larger firing rate than another one.

In the case of two nonidentical neurons, the above
mentioned cyclic relative phase distributions are still ten-
able and the perfect phase synchronization can also be
achieved (see Fig. 10). However, there are three excep-
tions. First, because the symmetry of the distribution
P (Φ) is dependent on the symmetry of the system, for
nonidentical neurons the distribution of the cyclic relative
phase is asymmetric (see Fig. 9). This fact was also con-
firmed by applying different tonic subthreshold currents
to two neurons to make the system asymmetric [21]. Sec-
ond, as mentioned before, the two weakly coupled iden-
tical neurons with large channel cluster sizes are unable
to fire spikes under a subthreshold stimulus (see the plot
of N = 2 × 105 in Fig. 8). However, when a neuron with
large channel cluster size coupled with a small one which
could be excited by subthreshold stimulus due to channel
noise, the large one is excited by the small one through
coupling. As shown in Figure 10, comparing with identical
situation, the neuron can be excited when N = 2×105 and
ε is rather small. It is also seen that in the weak coupling
region, the identical neurons exhibit higher degree of syn-
chronization than the nonidentical ones. Whereas in the
strong coupling region, when a neuron is coupled to an-
other one which has larger N , they exhibit higher degree
of synchronization. This is consistent with the frequency
synchronization case where identical neuron is frequency

Fig. 10. Synchronization indices for two nonidentical neurons
versus coupling strength with channel cluster size of the first
neuron N2 = 2 × 103.

locked even coupling is weak, but nonidentical neuron can
also be synchronized if the coupling is strong, and neurons
with large channel clusters are easier to get synchronized.

5 Conclusion

In conclusion, the frequency and phase synchronization of
two coupled stochastic Hodgkin-Huxley neurons are stud-
ied by varying coupling strength and channel cluster sizes.
The two neuron is coupled via a gap junction because the
gap-junctional (diffusive) coupling can generate rich dy-
namical behavior [31]. What’s more, with this simple cou-
pling, we could emphasized on the effects of channel noise
and ignore the inessential details of complex synaptic pro-
cess. Our studies show that when the coupling is weak,
the cluster sizes of the two neurons must be the same
to achieve frequency synchronization, and the synchro-
nization region is very narrow. However, when coupling
is strong, the two neurons can be frequency entrained in
a wide region. For two identical neurons, a state of sta-
tistical antiphase synchronization is reached in the strong
coupling region if the cluster size is large enough. In this
state, the relative phase between two spike trains would
be around π. As the coupling strength and channel cluster
size are reduced, the phase-locking condition is lost and a
rather complex behavior would appear. This complex be-
havior, as we have argued, is the result of a compromise
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between coupling strength and channel noise. We use syn-
chronization indices to characterize the transitions to syn-
chronization, and find that there exit a threshold to syn-
chronization. When channel cluster sizes are small, chan-
nel noise can ‘soft’ this threshold to present synchroniza-
tion at a wider range. For two nonidentical neurons, the
distribution of the cyclic relative phase is asymmetric and
the silent state in identical situation disappears. This, as
we have pointed out, is due to asymmetric of the system
and spontaneous firing induced by channel noise.

It is helpful that our study is important for the under-
standing of coupled stochastic systems and possible appli-
cations especially in neuroscience where the synchroniza-
tion activity could be tuned through the control of the
channel noise via channel blocking. By applying channel
cluster size control to real neural systems one should be
able to influence neural synchrony. Further work should
focus on more sophisticated models and on coupling more
than two neurons.
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